Biscotti: An Approach to Parallel Scheduling for Vectorized

Encrypted Arithmetic Circuits PURDUE

Vedant Paranjape, Aman Gupta, Sreevickrant S., Dulani W., Raghav Malik, Milind Kulk

UNIVERSITY.

+ ' ' ' ore . . . def conv8_recursive(signal, kernel, start, end, output):
Fully Homomorphic Encryption lets us evaluate arbitrary Intuition: Divide-and-conquer style programs can be broken into smaller et e P
circuits with encrypted inputs. subprograms which map to FHE vectors! sum = 0 +Ti)
.)) for jJ in range(4): lHINg IS a SPeECIlal CaSE
N o Divide: Decompose a large program into multiple kernels that can be scheduled sum += signal[start] * kernel[j] recursive funclicr
Encrypted computation is very slow, but we can use on FHE vectors! gzzﬁt:ﬁ[star't] — sum
FHE vectors to recover some performance. Conquer: Compose the kernels into a unified schedule, combining the results | + We can merge leaf noc
f each k I! mid = (start © end) / 2 to map to FHE vectors
Or each Kernel: conv8_recursive(signal, kernel, start, mid, output) .p . 1
def fib(n) 2 . conv8_recursive(signal, kernel, mid+1, end, output) enabllng paraIIellsm.
e 1p(N). o E
1t (n <= 1): Large program def conv8(signal, kernel):

: oUtpit = 2] =5 4+ Compose the smaller
: Decomposition conv8_recursive(signal, kernel, 0, 4, output) kernels to store results
. return output

output array.

Recursive\
unrolling
wKernell o) Kernel 2.

Synthesize

schedules J \ koo | k@1l | k@2 | kA3 k10 | k11 | k12 | K13
& Vectorized Kernel1 Vectorized Kernel 2
s e [[o]w
5 Sequence and 5 Y A V. Y v VRS
E interleave » : E
5 : Composition 5 5
; g :‘ _______ .J ______ &_""-_._...’:. Comblne and Interleave |anes
-\‘ Merged Keme|S ..'. kernel-ize and merge VMUL result Then unify Instructions

-- :‘ .: thEbasecaseS

+ D|V|dejan|d-co|r.1q.uer style l:|):)|robl.ems cabn patr)?llellzed by Biscotti targets recursive programs of the form: " tO=VMUL([sOs1][k0k1k2k3])
recursively splitting a problem into subproblems. . T e SH KU, KL KZ, KoL)
Y SPIHINg @ b P 4 Base case: Performs a fixed, constant-size kernel t0 =VMUL (sO, [kO, k1, k2, k3]) 1es t1 =ROT (0, 2) . .
: . t1 =ROT (tO, 1) qules of \eaf NOC= 2= VADD (t0, t1) Adjust rotations
conquer style programs to FHE vectors efficiently. 4 Combine: Store or merge outputs of the children. t3=ROT (t2, 2) Merge SCh® t4 = VADD (t2, t3) into rot (2x)
t4 = VADD (t2, t3) t5 = VSTORE (t4, [rO, r1])
+ Biscotti uses a novel way to recompose recursive Unrolling the recursion produces a tree of subproblems. Each t5 = VSTORE(t4, r0)
problem, while respecting the limitations of FHE leaf node corresponds to a constant-sized kernel that can be

vector schedule for c((vector schedule for ¢(0, 0),

vectors. vectorized.

Results

Conclusion

Runtime Comparison between Coyote and Biscotti Compile Time Comparison between Coyote and Biscotti

5T o 4+ We compile several benchmarks with Coyote and Biscotti |
E and compare the compile time and runtime of each.
4+ We see compile-time speedups of up to 31.3x! Mainly due
to efficient decomposition of programs into subprograms.
4+ We see run-time speedups of up to 15.8x! Generating
subprograms reduces search space for Coyote - efficient
vector schedules!

=
o
IS

4+ Biscotti decomposes programs into smaller
subprograms, synthesizes efficient schedules for each
and merges them into a single vector schedule.

4+ It finds a more efficient schedule, and finds it faster as
compared to existing works that use synthesis-based
techniques.

=
o
w

Runtime (ms)
Compile Time (s)

