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✦ Fully Homomorphic Encryption lets us evaluate arbitrary 
circuits with encrypted inputs. 

✦ Encrypted computation is very slow, but we can use 
FHE vectors to recover some performance. 

✦ Divide-and-conquer style problems can parallelized by 
recursively splitting a problem into subproblems. 

✦ But current techniques cannot map these divide-and-
conquer style programs to FHE vectors efficiently. 

✦ Biscotti uses a novel way to recompose recursive 
problem, while respecting the limitations of FHE 
vectors. 
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✦ Biscotti decomposes programs into smaller 
subprograms, synthesizes efficient schedules for each 
and merges them into a single vector schedule. 

✦ It finds a more efficient schedule, and finds it faster as 
compared to existing works that use synthesis-based 
techniques.

Conclusion
✦ We compile several benchmarks with Coyote and Biscotti 

and compare the compile time and runtime of each. 
✦ We see compile-time speedups of up to 31.3x! Mainly due 

to efficient decomposition of programs into subprograms. 
✦ We see run-time speedups of up to 15.8x! Generating 

subprograms reduces search space for Coyote - efficient 
vector schedules!

def conv8_recursive(signal, kernel, start, end, output):
if start == end:

sum = 0
for j in range(4):

sum += signal[start] * kernel[j]
output[start] = sum
return

 
mid = (start + end) / 2
conv8_recursive(signal, kernel, start, mid, output)
conv8_recursive(signal, kernel, mid+1, end, output)

def conv8(signal, kernel):
output = [0] * 5
conv8_recursive(signal, kernel, 0, 4, output)
return output
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Intuition: Divide-and-conquer style programs can be broken into smaller 
subprograms which map to FHE vectors! 
Divide: Decompose a large program into multiple kernels that can be scheduled 
on FHE vectors! 
Conquer: Compose the kernels into a unified schedule, combining the results  
of each kernel!

def fib(n):
if (n <= 1):

return 1

return fib(n-1) + fib(n-2)

result = fib(4)
fib (4)
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✦ Tiling is a special case of 
recursive function unrolling! 

✦ We can merge leaf nodes 
to map to FHE vectors, 
enabling parallelism. 

✦ Compose the smaller 
kernels to store results in 
output array.
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Biscotti targets recursive programs of the form: 

✦ Base case: Performs a fixed, constant-size kernel 

✦ Recursive: Makes recursive calls on a reduced problem space. 

✦ Combine: Store or merge outputs of the children. 
 
Unrolling the recursion produces a tree of subproblems. Each 
leaf node corresponds to a constant-sized kernel that can be 
vectorized.

t0 = VMUL (s0, [k0, k1, k2, k3]) 
t1  = ROT (t0, 1) 
t2 = VADD (t0, t1) 
t3 = ROT (t2, 2) 
t4 = VADD (t2, t3) 
t5  = VSTORE(t4, r0)

t0 = VMUL ([s0, s1], [k0, k1, k2, k3]) 
t1  = ROT (t0, 2) 
t2 = VADD (t0, t1) 
t3 = ROT (t2, 4) 
t4 = VADD (t2, t3) 
t5  = VSTORE (t4, [r0, r1])

vector schedule for c(0, 0) vector schedule for c(0, 0), c(1, 1)
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