
Biscotti: An Approach to Parallel Scheduling for Vectorized
Encrypted Arithmetic Circuits

Vedant Paranjape, Aman Gupta, Sreevickrant S., Dulani W., Raghav Malik, Milind Kulkarni

✦ Fully Homomorphic Encryption lets us evaluate arbitrary
circuits with encrypted inputs.

✦ Encrypted computation is very slow, but we can use
FHE vectors to recover some performance.

✦ Divide-and-conquer style problems can parallelized by
recursively splitting a problem into subproblems.

✦ But current techniques cannot map these divide-and-
conquer style programs to FHE vectors efficiently.

✦ Biscotti uses a novel way to recompose recursive
problem, while respecting the limitations of FHE
vectors.

Motivation Our Approach

Results

✦ Biscotti decomposes programs into smaller
subprograms, synthesizes efficient schedules for each
and merges them into a single vector schedule.

✦ It finds a more efficient schedule, and finds it faster as
compared to existing works that use synthesis-based
techniques.

Conclusion
✦ We compile several benchmarks with Coyote and Biscotti

and compare the compile time and runtime of each.
✦ We see compile-time speedups of up to 31.3x! Mainly due

to efficient decomposition of programs into subprograms.
✦ We see run-time speedups of up to 15.8x! Generating

subprograms reduces search space for Coyote - efficient
vector schedules!

def conv8_recursive(signal, kernel, start, end, output):
if start == end:

sum = 0
for j in range(4):

sum += signal[start] * kernel[j]
output[start] = sum
return

 
mid = (start + end) / 2
conv8_recursive(signal, kernel, start, mid, output)
conv8_recursive(signal, kernel, mid+1, end, output)

def conv8(signal, kernel):
output = [0] * 5
conv8_recursive(signal, kernel, 0, 4, output)
return output

Large program

Kernel 1 Kernel 2

Vectorized Kernel 1 Vectorized Kernel 2

Merged Kernels

Synthesize
schedules

Sequence and
interleave

Recursive
unrolling

Decomposition

Composition

Intuition: Divide-and-conquer style programs can be broken into smaller
subprograms which map to FHE vectors!
Divide: Decompose a large program into multiple kernels that can be scheduled
on FHE vectors!
Conquer: Compose the kernels into a unified schedule, combining the results
of each kernel!

def fib(n):
if (n <= 1):

return 1

return fib(n-1) + fib(n-2)

result = fib(4)
fib (4)

fib (3) fib (2)

fib (2) fib (1)

✦ Tiling is a special case of
recursive function unrolling!

✦ We can merge leaf nodes
to map to FHE vectors,
enabling parallelism.

✦ Compose the smaller
kernels to store results in
output array.

Re
cu
rs
io
n

ba
se
 c
as
e

Re
cu
rs
iv
e

Ca
ll

Biscotti targets recursive programs of the form:

✦ Base case: Performs a fixed, constant-size kernel

✦ Recursive: Makes recursive calls on a reduced problem space.

✦ Combine: Store or merge outputs of the children.

Unrolling the recursion produces a tree of subproblems. Each
leaf node corresponds to a constant-sized kernel that can be
vectorized.

t0 = VMUL (s0, [k0, k1, k2, k3])
t1 = ROT (t0, 1)
t2 = VADD (t0, t1)
t3 = ROT (t2, 2)
t4 = VADD (t2, t3)
t5 = VSTORE(t4, r0)

t0 = VMUL ([s0, s1], [k0, k1, k2, k3])
t1 = ROT (t0, 2)
t2 = VADD (t0, t1)
t3 = ROT (t2, 4)
t4 = VADD (t2, t3)
t5 = VSTORE (t4, [r0, r1])

vector schedule for c(0, 0) vector schedule for c(0, 0), c(1, 1)

Merge schedules of leaf nodes

c(0,4)

c(0,2) c(3,4)

c(0,1) c(2,2)

c(0,0) c(1,1)

c(3,3) c(4,4)

kernel-ize and merge
the base cases

S0k0 S1k0 s0k1 s1k1 s0k2 s1k2 s0k3 s1k3

Combine and Interleave lanes
Then unify instructionsVMUL result

k00 k10 k01 k11 k02 k12 k03 k13

Sequence schedules of leaf nodes Adjust rotations
two rot (x) merged

into rot (2x)

k00 k01 k02 k03 k10 k11 k12 K13

